Obo, J. et al. A map of permafrost in the Northern Hemisphere based on the TTOP model for 2000–2016 at 1 km scale (2). Journal of Earth Sciences. 193, 299–316 (2019).
Gruber, S. Derivation and analysis of high-resolution estimates of global permafrost partitioning. Cryosphere 6, 221-233 (2012).
Obo, J. How much of the Earth's surface is beneath permafrost? Journal of Geophysical Research. Earth 126, e2021JF006123 (2021).
Hook, R. et al. in The Intergovernmental Panel on Climate Change Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) (eds. Portner, H.-W. et al.) 131–202 (Cambridge University Press, 2019).
RGI-7.0-Consortium. Randolph Glacier Inventory – Dataset for Global Glacier Charts, Version 7.0 (National Snow and Ice Data Center, Boulder, Colorado, USA, 2023).
Arenson, L. W., Harrington, J. S., Koenig, C. E. M., and Weinstein, P. A. Mountain permafrost groundwater science—a practical review following studies from the Andes. Earth Sciences 12, 48 (2022).
Jones, D. B., Harrison, S., Anderson, K., and Whaley, W. B. Rock glaciers and mountain hydrology: a review. Journal of Earth Sciences, 193, 66–90 (2019).
Miller, C. I. and Westphal, R. D. The geo-hydrological and climatic significance of rock glaciers in the Great Basin, USA. Arctic. Antarctica. Alpine Research 51, 232–249 (2019).
Delin, B. et al. In Snow and Ice-Related Hazards and Disasters (eds. Schroeder, J. F., Haberle, W., and Whitman, C.) 521–561 (Academic Press, 2015).
Biscaborn, B. K. et al. Permafrost is warming globally. Nat. Commun. 10, 264 (2019).
Notzli, J. et al. Permafrost temperature and active layer thickness. In “State of the Climate in 2022.” Journal of the American Meteorological Society. 104, 39–41 (2023).
Google Scholar
Smith, S. L., O'Neill, H. B., Isaksen, K., Notzli, J., and Romanowski, V. E. The changing thermal state of permafrost. National Journal of Earth and Environmental Research, 3, 10–23 (2022).
Wahrhaftig, C. & Cox, A. Rock glaciers in the Alaska Range. Thor. Geol. Soc. Acon. 70, 383-436 (1959).
Berthling, I. Beyond confusion: rock glaciers as cooling-conditioned landforms. Geomorphology 131, 98–106 (2011).
Barsh, D. Rock Glaciers: Indicators of Present and Past Environmental Geology in High Mountain Environments (Springer, 1996).
Pelle, C. et al. Rock glacier velocity. In “State of the Climate in 2022.” Journal of the American Meteorological Society. 104, 41–42 (2023).
Google Scholar
Bertoni, A. et al. Integration of radar kinematics guided by…
Kapp, A., Frauenfelder, R. and Roer, Y. On the response of rock glacier encroachment to increasing surface temperature. Globe. Planet. Change 56, 172–187 (2007).
Arenson, L. and Springman, S. Mathematical descriptions of the behaviour of ice-rich permafrost soils at temperatures near 0°C. Canadian Geotech Journal. 42, 431-442 (2005).
Sequeira, A. et al. A general theory of rock glacier encroachment based on in situ observations and remote sensing. Permafr. Pereglac. 32, 139–153 (2021).
Keller-Birkelbauer, A. et al. Acceleration and interannual variability of creep rates in mountainous permafrost terrain (rock-glacier velocities) in the European Alps during 1995–2022. Journal of Environmental Research, Vol. 19, 034022 (2024).
Eriksen, H. O. et al. Recent acceleration of the Adjet rock glacier complex, Norway, documented by 62 years of remote sensing observations. Geophys. Res. Lett. 45, 8314–8323 (2018).
Johnson, J., Chang, H., and Fontaine, A. Active rock glaciers in the contiguous United States: GIS inventory and spatial distribution patterns. Earth Systems Science Data 13, 3979–3994 (2021).
Jones, D. B., Harrison, S., Anderson, K., & Bates, R. A. Rocky mountain glaciers contain water stores of global importance. Science, 8, 2834 (2018).
Potter, N. et al. Revisiting a rock glacier at Galena Creek—new notes on an old controversy. Journal of Geography, Vol. 80, pp. 251–265 (1998).
Conrad, S. K. et al. Rock glacier dynamics and their effects on paleoclimate. Geology 27, 1131–1134 (1999).
Janke, J. R., Long-term flow measurements (1961–2002) of the Arapaho, Taylor, and Fair rock glaciers, Front Range, Colorado. Phys. Geo. 26, 313–336 (2005).
Meng, T. M. et al. Photogrammetric monitoring of rock glacier movement using high-resolution multi-platform datasets: Estimation of formation age and modern thinning rates. Remote Sens. 15, 4779 (2023).
Liu, L., Millar, C. I., Westphal, R. D., and Zipker, H. A. Surface motion of active glaciers in the Sierra Nevada, California, USA: an inventory and case study using the InSAR radar. Cryosphere 7, 1109–1119 (2013).
Strozzi, T. et al. Monitoring rock glacier dynamics using satellite-based synthetic aperture radar. Remote Sense. 12, 559 (2020).
Kap, A. et al. Inventory and changes in the encroachment velocities of rock glaciers on Alatau Island and Kongwe Ala-Too, northern Tian Shan, since the 1950s. Cryosphere 15, 927–949 (2021).
Janke, J. R. Photogrammetric analysis of rock glacier flow rates in the Front Range. Journal of Geography. A 87A, 515–526 (2005).
Kapp, A. and Vollmer, M. Surface geometry, thickness variations, and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis. Permafer. Berglak. 11, 315–326 (2000).
Pepin, N. C. et al. Climate change and elevation patterns in the world's mountains. Journal of Geophysics. 60, e2020RG000730 (2022).
Elias, E. et al. Effects of observed changes in high mountain snowwater storage on snowmelt timing and melt window. Journal of Water Regulation Studies 35, 100799 (2021).
Notarnicola, C. Hotspots of snow cover changes in global mountain regions during 2000–2018. Journal of Remote Sensing of the Environment. 243, 111781 (2020).
Moti, B. W., Lee, S. H., Lettenmaier, D. B., Xiao, M., and Engel, R. Dramatic declines in snow cover in the western United States. National Journal of Climate and Atmospheric Science 1, 2 (2018).
Sequeira, A., Beutel, J., Velitaz, J., Gartner-Rohr, Y. and Veli, A. Resolving the effect of temperature forcing by thermal conduction on the dynamics of rock glaciers: a numerical modeling approach. Cryosphere 13, 927–942 (2019).
Conrad, S. K., and Humphrey, N. F. Debris-covered glaciers. IAHS Publ. 264, 255-263 (2000).
Google Scholar
Peterson, E. I., Levy, J. S., Holt, J. W., and Sturman, C. New insights into ice accumulation in a rock glacier called Galena Creek from radar imaging of its internal structure. Journal of Glaciology. 66, 1–10 (2020).
Kenner, R., Prussner, L., Beutel, J., Lembeck, B. and Phillips, M. How do rock glacier hydrology, deformation velocities and ground temperatures interact: examples from the Swiss Alps. Permafer. Perglac. 31, 3–14 (2020).
Moore, P. L. Deformation of ice-debris mixtures. Journal of Geophysics 52, 435–467 (2014).
Arenson, L., Hoysel, M. and Springmann, S. Measurements of the deformation of wells and internal structure of some rock glaciers in Switzerland. Permafrost Periglac. 13, 117-135 (2002).
Dehecq, A. et al. Slowing of glaciers in the twenty-first century due to mass loss in the high mountains of Asia. Nat. Geosci. 12, 22 (2019).
Gilbert, A., Gimbert, F., Togersen, K., Schuler, T. V., and Kaib, A. A consistent framework for linking basal friction to subglacial hydrology on hard-bedded glaciers. Journal of Geophysical Research. 49, e2021GL097507 (2022).
Vincent, C., Soroko, A., Six, D., and Le Meur, E. Analysis of glacier thickness and delamination from 50 years of glaciological observations conducted on the Argentière Glacier, Mont Blanc region, France. Ann. Glaciol. 50, 73–79 (2009).
Wang, B. Y. et al. Long-term variation of ice velocity in Urumqi No. 1 Glacier, Tianshan, China. Journal of Cold Regulation Science and Technology. 145, 177–184 (2018).
Villarroel, CD, Beliveau, GT, Forte, AP, Monserrat, O. & Morvillo, M. DInSAR for a regional inventory of active rock glaciers in the dry Andes of Argentina and Chile using Sentinel-1 data. Remote Sens. 10, 1588 (2018).
Debella-Gilo, M. & Kääb, A. Matching subpixel resolution images to measure surface displacements under mass motions using normalized cross-correlation. Remote Sens. Environ. 115, 130–142 (2011).
Hyde, T. and Kaib, A. Evaluation of existing image matching methods for inferring global glacier surface displacements from optical satellite images. Remote Sensing and Environment. 118, 339–355 (2012).
Kapp, A. et al. Remote sensing of glaciers using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sensing 8, 598 (2016).
Kääb, A., Altena, B. & Mascaro, J. River-ice and water velocities using the Planet optical cubesat constellation. Hydrol. Earth Syst. Sci. 23, 4233–4247 (2019).
McGill, R., Tukey, J. W., and Larsen, W. A. Variations in box plots. American Statistical Review 32, 12-16 (1978).
Hall, J. and Hall, M. Assessing the accuracy of digital elevation models using robust statistical methods. Journal of Photography of the International Photographic Society. 64, 398-406 (2009).
Hersbach, H. et al. ERA5 single-level monthly mean data from 1940 to the present. (C3S Climate Data Store Editor), https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means (2023), accessed 30 January 2024.
Kapp, A. Displacements on selected rock glaciers in the United States (Version 1). Dataset. Zenodo https://doi.org/10.5281/zenodo.13254373 (2024).